The effect of conformational variability of phosphotriesterase upon N-acyl-L-homoserine lactone and paraoxon binding: insights from molecular dynamics studies.

نویسندگان

  • Dongling Zhan
  • Zhenhuan Zhou
  • Shanshan Guan
  • Weiwei Han
چکیده

The organophosphorous hydrolase (PTE) from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R) led to the emergence of a homoserine lactonase (HSL) activity that is undetectable in PTE (kcat/km values of up to 2 × 10(4)), with only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and molecular dynamics simulations have been undertaken seeking to explain the reason for the substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume estimated results showed that the active pocket of the variant was almost two fold larger than that of the wild-type (WT) enzyme. pKa calculations for the enzyme (the WT and the variant) showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units) for the His254 residue (in the Arg254 variant). Molecular dynamics simulations indicated that the displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for N-acyl-L-homoserine lactone (C4-HSL) with a large aliphatic chain to site in the channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding and has a little effect on paraoxon binding. Our results provide a new theoretical contribution of loop remodeling to the rapid divergence of new enzyme functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical Detection of N-Acyl Homoserine Lactone from Biofilm-Forming Uropathogenic Escherichia coli Isolated from Urinary Tract Infection Samples

Background: N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming...

متن کامل

Molecular Modeling Studies on Vinblastine Binding Site of Tubulin for Antimitotic agents

Medicinal chemistry depends on many other disciplines ranging from organic chemistry andpharmacology to computational chemistry. Typically medicinal chemists use the moststraightforward ways to prepare compounds. The validation of any design project comes from thebiological testing.Studies of the binding site of vinblastine by a single cross—linking experiment identified it asbeing between resi...

متن کامل

Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein.

Acylhomoserine lactones, which serve as quorum-sensing signals in gram-negative bacteria, are produced by members of the LuxI family of synthases. LuxI is a Vibrio fischeri enzyme that catalyzes the synthesis of N-(3-oxohexanoyl)-L-homoserine lactone from an acyl-acyl carrier protein and S-adenosylmethionine. Another V. fischeri gene, ainS, directs the synthesis of N-octanoylhomoserine lactone....

متن کامل

Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recogni...

متن کامل

N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia.

Quorum sensing via an N-acyl homoserine lactone (HSL) pheromone controls the biosynthesis of a carbapenem antibiotic in Erwinia carotovora. Transcription of the carbapenem biosynthetic genes is dependent on the LuxR-type activator protein, CarR. Equilibrium binding of a range of HSL molecules, which are thought to activate CarR to bind to its DNA target sequence, was examined using fluorescence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 2013